Algorithms: Complexity Analysis (Examples)

Claim: if $T(n) = a_k n^k + ... + a_1 n + a_0$ then

$$T(n) = O(n^k)$$

Proof : Choose $n_0 = 1$ and $c = |a_k| + |a_{k-1}| + ... + |a_1| + |a_0|$ Need to show that $\forall n \geq 1, T(n) \leq c \cdot n^k$

We have, for every $n \geq 1$,

$$T(n) \le |a_k| n^k + \dots + |a_1| n + |a_0|$$

 $\le |a_k| n^k + \dots + |a_1| n^k + |a_0| n^k$
 $= c \cdot n^k$

Claim: for every $k \ge 1$, n^k is not $O(n^{k-1})$

Proof: by contradiction. Suppose $n^k = O(n^{k-1})$ Then there exist constants c, n_0 such that

 $n^k \le c \cdot n^{k-1} \quad \forall n \ge n_0$

But then [cancelling n^{k-1} from both sides]: $n < c \quad \forall n > n_0$

Which is clearly False [contradiction].

Claim: $2^{n+10} = O(2^n)$

Proof: need to pick constants c, n_0 such that

$$(*) \quad 2^{n+10} \le c \cdot 2^n \quad n \ge n_0$$

Note: $2^{n+10} = 2^{10} \times 2^n = (1024) \times 2^n$ So if we choose $c = 1024, n_0 = 1$ then (*) holds.

Q.E.D

<u>Claim</u>: $2^{10n} \neq O(2^n)$

<u>Proof</u>: by contradiction. If $2^{10n} = O(2^n)$ then there exist constants $c, n_0 > 0$ such that

$$2^{10n} \le c \cdot 2^n \quad n \ge n_0$$

But then [cancelling 2^n]

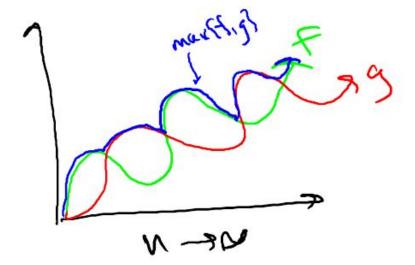
$$2^{9n} \le c \quad \forall n \ge n_0$$

Which is certainly false.

Q.E.D

Claim: for every pair of (positive) functions f(n), g(n),

$$max\{f,g\} = \theta(f(n) + g(n))$$



Example #3 (continued)

$$\underline{\mathsf{Proof}}:\ max\{f,g\} = \theta(f(n) + g(n))$$

For every n, we have

$$\max\{f(n),g(n)\} \le f(n) + g(n)$$

And

$$2 * max\{f(n), g(n)\} \ge f(n) + g(n)$$

Thus
$$\frac{1}{2}*(f(n)+g(n)) \le max\{f(n),g(n)\} \le f(n)+g(n) \ \forall n \ge 1$$

=> $max\{f,g\} = \theta(f(n)+g(n))$ [where $n_0=1,c_1=1/2,c_2=1$]

For example, $max(2,3) \le (2+3)$ 3 <= 5But,

2*max(2,3) >= (2+3)=> 2 * 3 >= (2+3)=> .5 * (2*3) >= .5 * (2+3)=> 3 >= .5 *(2+3)

=> max(2,3) >= .5*(2+3) $=> .5*(2+3) \le \max(2,3)$

Big O notation: properties

Constants. If
$$f$$
 is $O(g)$ and $c > 0$, then cf is $O(g)$.

Products. If f_1 is $O(g_1)$ and f_2 is $O(g_2)$, then $f_1 f_2$ is $O(g_1 g_2)$.

Products. If
$$f_1$$
 is $O(g_1)$ and f_2 is $O(g_2)$, then $f_1 f_2$ is $O(g_1 g_2)$.
Pf.

Pt.
•
$$\exists c_1 > 0$$
 and $n_1 \ge 0$ such that $0 \le f_1(n) \le c_1 \cdot g_1(n)$ for all $n \ge n_1$.

•
$$\exists c_2 > 0$$
 and $n_2 \ge 0$ such that $0 \le f_2(n) \le c_2 \cdot g_2(n)$ for all $n \ge 0$
• Then, $0 \le f_1(n) \cdot f_2(n) \le c_1 \cdot c_2 \cdot g_1(n) \cdot g_2(n)$ for all $n \ge \max \{ c_1 \cdot c_2 \cdot g_1(n) \cdot g_2(n) \}$

Transitivity. If f is O(g) and g is O(h), then f is O(h).

Ex. $f(n) = 5n^3 + 3n^2 + n + 1234$ is $O(n^3)$.

•
$$\exists c_2 > 0 \text{ and } n_2 \ge 0 \text{ such that } 0 \le f_2(n) \le c_2 \cdot g_2(n) \text{ for all } n \ge n_2.$$
• Then, $0 \le f_1(n) \cdot f_2(n) \le \underbrace{c_1 \cdot c_2}_{c} \cdot g_1(n) \cdot g_2(n) \text{ for all } n \ge \max_{n_0} \{n_1, n_2\}.$

Sums. If f_1 is $O(g_1)$ and f_2 is $O(g_2)$, then $f_1 + f_2$ is $O(\max\{g_1, g_2\})$.

Reflexivity. f is O(f).

ignore lower-order terms

Suggested Reading

- → Algorithms (CLRS)
 - Chapter 3
 - Section 3.1
- → Algorithm illuminated (Part 1) by Tim Roughgarden
 - Chapter 2
 - Section 2.3. 2.5